November 28, 2012

Martha Drukker
Associate Engineer
City of Concord
41 Green Street
Concord, NH 03301

Re: Sewalls Falls Bridge Rehabilitation over the Merrimack River
 NHDOT Project No.: Concord 12004;
 CHA Project No.: 23968
 Re-Evaluation Summary of Preliminary Design Alternatives

Dear Ms. Drukker:

At your request as a result of CHA’s detailed inspection and load rating analysis of the existing Sewalls Falls Road Bridge, we have re-evaluated the current preferred Alternative H, as well as two previously developed alternatives, 4 and 8. All three of these Alternatives were developed and evaluated through NHDOT Preliminary Design Phase. The purpose of this re-evaluation is to assess whether or not the current Preferred Alternative H should be progressed through final design and ultimately construction or if Alternatives 4 or 8 would better meet the long-term needs of the City. Factors that were considered in these evaluations included immediate and long term costs for construction and maintenance of the bridge(s), environmental and Right of Way (ROW) impacts, historic preservation of the existing truss bridge, as well as potential future development and increased traffic demands on the bridge(s).

As part of this re-evaluation, CHA retained the services of Historic Documentation Company (HDC) to review the inspection and load rating analysis of the existing bridge and assess whether or not the amount of required rehabilitation of the bridge to carry legal highway loads would adversely impact the historic significance of the bridge. HDC’s full memo report is attached and summarized below.

Because Alternatives 4 and 8 were developed in Metric units (the standard at the time of their initial investigation) and Alternative H was developed in English units, the narratives below are presented in dual units. In addition, because the ROW abstracting information on the three alternatives differ due to the time that each alternative was developed, ROW impacts will reference the parcel number and not the property owner name as shown on the respective plans. Cost comparisons are based on English units per 2012 NHDOT weighted unit costs.
Written descriptions of the three Preliminary Design Alternatives under consideration are as follows:

Common Design Elements

All three (3) alternatives are based on a common design criteria and design approach. The proposed roadway geometry includes providing 2 – 12’ (3.6 m’) travel lanes with 5’ (1.5 m) shoulders and 5’ (1.5 m) sidewalk(s). The roadway alignments are based on a 35 MPH (60 KPH) design speed. The proposed sidewalk extends from the Fish and Game Park (Parcel 4) driveway to the Concord Monitor (Parcel 1) driveway. A general description of each of the proposed alternatives follows:

Alternative 4 – Offline Upstream Replacement

Alternative 4 consists of constructing a new two lane steel girder bridge immediately upstream of the existing bridge with the existing bridge either being retained for pedestrian or recreational use or abandoned in place as a static structure.

Horizontal Alignment: This Alternative consists of an upstream alignment shift with the entire proposed bridge on a horizontal tangent. This tangent continues through the southern approach to a 600m (1969’) radius curve which transitions into the existing roadway at the southern limits with two 1520m (4,987’) radius reverse curves with normal crowned section. The northern approach consists of a 150m (490’) radius curve with the remainder of the approach along the existing horizontal alignment. Some superelevation transition is required over the north span of the bridge due to proximity of the northern approach horizontal curve.

Vertical Alignment: The southern approach essentially matches existing grade up to the existing approach spans, with the elevation increasing across the bridge. At the southern abutment the proposed elevation is approximately 1m (3’) higher than existing with the northern abutment being approximately 3m (10’) higher. This increase in elevation is a result of meeting minimum vertical geometry design criteria while limiting the vertical curves to the roadway approaches and not the bridge. This increase in elevation requires significantly higher abutments and wingwalls than the existing. However the alignment does help to minimize the impacts to Parcels 1 and 2.

Construction Phasing: This Alternative allows for the construction of the proposed bridge while utilizing the existing bridge and approach span to maintain the current alternating one-way traffic patterns. The south abutment can be constructed in a single phase. Due to the proximity of the proposed northern abutment and pier to the existing substructure and roadway, however, phased construction will be required to complete these portions of the bridge. Adequate bridge width constructed under Phase 1 would provide for two-way traffic on the proposed bridge during the construction of the east portion of the abutment, wingwall and pier, provided the proposed sidewalk was not constructed until the completion of this phase. A temporary roadway
profile with short term closure at +/- Sta. 6+00 will be required to transition from the proposed roadway grade to the existing grade. In addition, short term closures at the tie-in point will be required. It is estimated at this time that two (2) construction seasons will be necessary to construct this Alternative.

Utilities: The proposed horizontal and vertical alignments for Alternative 4 provide sufficient setbacks to allow the existing bridge to remain in place. As such, the existing sewer and gas mains located on the existing structure can remain. The existing 600mm (24”) storm drain at the southwest quadrant would be impacted as a result of the proposed alignments.

Right of Way Impacts: This Alternative results in substantial Right of Way (ROW) impacts to the LCIP land located in the southwest quadrant (Parcel 5) as well as the Concord Monitor (Parcel 1) property located in the northwest quadrant. Impacts to the Concord Monitor parcel will include reconstruction / reconfiguration of their existing water quality basin as a result of slope impacts. Minimal ROW impacts, limited to easements, will be required at Parcel 2. In addition, we are anticipating that a stormwater quality basin, similar to that shown in Alternative H, will be constructed on the Fish and Game property (Parcel 5) at the southeast quadrant.

Resource / Environmental Impacts: Several environmental and cultural resources have been identified in the project corridor. The following is a summary of the impacts to these resources related to Alternative 4:

- The existing historically significant bridge can remain in place and can either be rehabilitated for recreational trail purposes or abandoned in place as a static display. If used for recreational trail purposes, while not necessary to provide pedestrian / bicycle access across the river, a connecting structure from the proposed sidewalk to the bridge would be necessary at the southern end or a pedestrian underpass would need to be constructed under the southern approach similar to that shown in Alternative H.
- The existing Fish and Game boat ramp is not impacted other than installation of a new drainage outfall from the proposed treatment area.
- The Alternative does create limited impacts to the floodway / floodplain of the Merrimack River.
- Based on a survey of the river in October 2001, State endangered Brook Floater Mussels are within the project limits. This Alternative may create minimal disturbance / impacts to these mussels.
- Moderate impacts to potential eagle perch trees will result due to the extents of clearing and slope work to the east.
- As noted above, substantial ROW impacts to the LCIP land will result due to the proposed alignment and limits of slope work and clearing.
Alternative 8 – Online Replacement

Alternative 8 constructs a new two lane steel beam bridge along the existing alignment replacing the existing structure.

Horizontal Alignment: Alternative 8 maintains the existing alignment with the entire proposed bridge on a tangent. This tangent continues through the southern approach which is tied into the existing roadway at the southern limits with a 5000m (16,400’) radius curve and a normal crowned section. The northern approach consists of a 150m (490’) radius curve. As currently proposed, this alternative requires superelevation transition over the bridge which is undesirable. Through Final Design refinements, this superelevation transition should be able to be limited to the roadway approach.

Vertical Alignment: The southern approach essentially matches existing grade in the vicinity of the Fish and Game Park driveway and increases across the bridge to the Concord Monitor driveway. At the southern abutment, the proposed elevation is approximately 3m (10’) higher than existing with the northern abutment being approximately 5m (16’) higher. While the profile is significantly higher than existing, it does provide for a smooth vertical geometry, with vertical curve lengths and profile grades greater than the minimum required. This vertical geometry also minimizes impacts to parcels 1 and 2 on the northern approach.

Construction Issues: Because this bridge replacement alternative is on-line, the existing bridge would need to be closed and removed during construction. This closure would result in an approximate six (6) mile detour from one side of the bridge to the other. In addition, due to the location of the proposed horizontal curve at the north approach, superelevation transition would need to occur across the north span. This transition may be difficult to construct in the field. As noted above, refinements in Final Design should be able to eliminate this transition across the bridge. It is estimated at this time that two (2) construction seasons will be necessary to construct this Alternative.

Utilities: The proposed horizontal and vertical alignments for Alternative 8 require that the existing bridge be removed. Therefore, the existing sewer and gas mains located on the existing structure will need to be relocated. Provisions for maintaining these utilities during construction would need to be incorporated into the Final Design. In addition, the existing 600 mm (24”) storm drain at the southwest quadrant would need to be relocated as well.

Right of Way Impacts: As currently proposed, this Alternative does not require any property acquisitions but will require moderate slope easements from each of the properties adjacent to the bridge. A permanent drainage easement will likely be required at the Fish and Game parcel for a water quality basin, similar to that shown in Alternative H.
Resource / Environmental Impacts: The following is a summary of impacts to cultural and environmental resources related to Alternative 8:

- The existing historically significant bridge needs to be removed.
- The existing Fish and Game boat ramp is not impacted but may need to be closed for a period during construction as well as for construction of a new drainage outfall from the proposed water quality basin.
- The Alternative creates minimal impacts to the floodway / floodplain of the Merrimack River.
- Based on a survey of the river in October 2001, State endangered Brook Floater Mussels are within the project limits. This alternative may create minimal disturbance / impacts to these mussels.
- Minimal impacts to potential eagle perch trees will result due to the extents of clearing and slope work to the east.
- As noted above, moderate ROW impacts to the LCIP land will result due to the proposed alignment and limits of slope work and clearing.

Alternative H – Rehabilitation of Existing Bridge with Addition of Second One-Way Bridge on the Upstream Side

This alternative consists of rehabilitating the existing Sewalls Falls Road Bridge to carry one lane of northbound traffic and constructing a new single lane steel beam bridge just upstream of the existing bridge to carry a single lane of southbound traffic. Both structures will be placed on new cast-in-place concrete substructures.

Horizontal Alignment: The northbound lane / southern approach essentially remains on the existing tangent alignment through the bridge and transitions to a 500 ft. radius curve through the northern approach matching the existing roadway alignment. The southbound lane / northern approach begins to diverge from the existing roadway with a 470 ft. radius onto the new single lane structure and continues across the bridge at which point it merges with the existing roadway through a 4,000 ft. radius curve. In addition, a pedestrian underpass is proposed under the southern approach to provide connectivity to the existing trail network.

A cantilevered sidewalk was originally proposed to be constructed along the downstream fascia of the existing truss bridge. However, based on the detailed inspection and load rating of the bridge, it was determined that this alternative was not viable due to the extensive replacement and strengthening of the entire downstream truss. Therefore, this Alternative now includes the construction of a sidewalk along the west side of Sewalls Falls Road beginning at the Fish and Game Park driveway and extending across the new single lane bridge to the Concord Monitor driveway. Mid-block crosswalks at the terminus of the sidewalk limits will be required to provide connectivity to the existing trail network. These mid-block crosswalks raise pedestrian
safety concerns and are undesirable. In addition, the relocation of the sidewalk to the west side of the road increases the slope impacts to the LCIP property, encroaching approximately 7 ft. further into the parcel than the original alternative.

Vertical Alignment: Both structures and approaches will parallel each other. The southern approach essentially matches existing grade up to the existing approach spans (to be removed), with the elevation increasing across the bridge. At the southern abutment the proposed elevation is approximately the same as existing with the northern abutment being approximately 5 ft. higher. This increase in elevation is a result of improving vertical geometry while limiting the vertical curves to the roadway approaches and not the bridge. This increase in elevation requires significantly higher abutments and wingwalls than the existing. However the alignment does help to minimize the impacts to the Parcels 1 and 2 on the northern approach.

Construction Phasing: The proposed parallel alignment offers benefits related to traffic control, since the new bridge construction can be completed while traffic is maintained on the existing bridge. Following the completion of the parallel bridge, alternating one-way traffic would be relocated to the new bridge and the rehabilitation of the existing bridge would commence. During roadway construction, traffic may be shifted using short term lane closures.

The existing truss will need to be supported during rehabilitation which will require a temporary support system or to be disassembled for necessary repairs.

Utilities: The proposed horizontal and vertical alignments for Alternative H provide sufficient setbacks to allow the existing bridge to remain in place. As such, the existing sewer and gas mains located on the existing structure can remain or be relocated to the new bridge. The existing 24 inch storm drain at the southwest quadrant would be impacted as a result of the proposed alignments.

Right of Way Impacts: This Alternative results in substantial Right of Way (ROW) impacts to the LCIP land located in the southwest quadrant as well as to the Concord Monitor property located in the northwest quadrant. The ROW impacts to the Concord Monitor property will include the reconstruction / reconfiguration of their existing water quality basin in the northwest quadrant which are the result of the sidewalk construction and associated slope limits along west side of roadway. Minimal ROW impacts, limited to easements, will be required at Parcel 2 in the northeast quadrant. In addition to some slope impacts to the Fish and Game parcel, a water quality basin is proposed adjacent to Sewalls Falls Road which will require a permanent drainage easement.
Resource / Environmental Impacts: Several environmental and cultural resources have been identified in the project corridor. The following is a summary of the impacts to these resources related to Alternative H:

- The existing historically significant bridge can remain in place. Based on the rehabilitation review performed by HDC, the current extents of rehabilitation can be accomplished while retaining the bridge’s historic integrity and eligibility.
- The existing Fish and Game boat ramp is not impacted. However, a permanent drainage easement will be required adjacent to Sewalls Falls Road.
- The Alternative does create limited impacts to the floodway / floodplain of the Merrimack River.
- Based on a survey of the river in October 2001, State endangered Brook Floater Mussels are within the project limits. This alternative may create minimal disturbance / impacts to these mussels.
- Moderate impacts to potential eagle perch trees will result due to the extents of clearing and slope work to the east.
- As noted above, substantial ROW impacts to the LCIP land will result due to the proposed alignment and limits of slope work and clearing.

Other Considerations

Questions and concerns have been raised as to the remaining service life of the existing truss bridge once it has been rehabilitated which was based on a fatigue analysis performed by CHA as part of the load rating. The validity of that fatigue analysis has also been questioned and we offer the following for consideration:

CHA noted in the Load Rating analysis that the minimum finite life calculated for the diagonals is about 145 years, and their remaining fatigue life is approximately 45 years being that the bridge is approximately 100 years old. CHA also noted that this can be increased with the strengthening of the members and gussets required to bring the bridge up to legal load capacity. CHA’s fatigue analysis was based on an HS20 loading and the 1994 AADT traffic data.

Metal fatigue failure in bridges has been a known phenomenon for decades. All bridges, old and new, are subject to metal fatigue. Fatigue failure occurs when members are repeatedly subjected to tension forces. The molecules in the steel will reorient themselves when subject to deformations resulting from high stresses. When the molecules can no longer reorient themselves, deformations are accommodated by breaking bonds between molecules. The breaking of bonds leads to the formation of cracks in the steel. The number of cycles before cracks occur depends on the stress. The higher the stress the more rapidly cracks form.

The current code requires consideration of fatigue in the design. Current knowledge allows Engineers to design new bridges for fatigue so that they can be repeatedly subjected to tension...
without breaking molecular bonds that will lead to formation of cracks. This is done by limiting the stress in members. The result are bridges with an infinite fatigue life when used as designed.

The Sewalls Falls truss bridge is a specific type of structure called non-redundant. This means if one member fails, the bridge could collapse. Because the weight of trucks has increased since the bridge was originally built, the stress in the members has increased. As stated previously, the higher the stress, the sooner cracks can form.

There are many factors used in calculating the fatigue life. Two of the significant factors are the number of times the member has been stressed and the value of the stress. It is impossible to determine the actual number of stress cycles the bridge has experienced since it was built and it is equally impossible to determine the weight of each truck that has crossed the bridge.

CHA used annual daily truck traffic supplied by the NHDOT for 1994 as the basis of the analysis. CHA conservatively assumed the weight of the trucks equaled the current legal highway loads and was not based on the load postings over time. Absent actual data, these are assumptions that allow the calculation of remaining fatigue life. It is true that the bridge may not immediately fail exactly at the calculated fatigue life. However, it is an accepted statistically based approach to provide information. A more detailed inspection of the truss members could be performed which would include X-rays and inspection of the element’s metallurgy to more accurately determine the remaining fatigue life, but these inspections are costly and time consuming.

Because catastrophic collapse can be the result of fatigue cracks in the Sewalls Falls Bridge, special attention is needed when approaching the estimated fatigue life. The special attention can consist of increased frequency of inspection. Alternatively, the chance of fatigue cracking can be eliminated by not subjecting the bridge to loads.

Conclusions

As the City further considers which Alternative to proceed with through final design and construction, various factors should be evaluated and weighed in order to select a preferred Alternative that will best meet the immediate, and more importantly the long term, needs and goals of the City. This includes preservation of cultural and natural resources, initial and long term costs and factors that influence those costs, safety, as well as consideration of improvements and development in the Sewalls Falls Road Bridge area which include commercial development and the potential of a new I-93 interchange, which will likely increase the traffic demands along Sewalls Falls Road. Below is a summary of each Alternative in regards to alignments, construction complexity, cost and impacts which are also reflected in part in the attached Alternative Summary Matrix:

Alternative 4 - Off-Line Upstream

1. Vertical & Horizontal Alignment: The construction of a two-lane bridge built upstream of
the existing bridge provides the horizontal and vertical alignments meeting the 35 mph design speed. However, it requires the addition of reverse horizontal curves to match in at the southern limits of the project.

2. Construction complexity / risk: Alternative 4 has relatively minimal complexity to build which would be done using primarily traditional industry standard bridge construction methods. The separation distance between the two structures does add some complexity to the construction. In addition, there is some additional complexity and risk to cost escalation which is inherent in historic bridge rehabilitation. This risk includes the discovery of additional corrosion or members requiring to be replaced or strengthened during construction. This risk can be mitigated to a certain degree by providing appropriate contingencies in the design documents and construction cost estimates. Cost contingencies have been accounted for to a certain degree in the estimated cost shown in the Matrix for the Truss Rehabilitation.

3. Construction Cost and Long Term Maintenance: The initial cost of this alternative is approximately 10% higher than the On-line Alternative, assuming that the existing truss bridge is rehabilitated for pedestrian / recreational use. In addition, the approximate maintenance cost of the truss over 25 years would be approximately $81,000. There may be additional cost initially or in the future depending on how much restoration the City is interested in doing to the existing bridge such as cleaning and repainting the entire bridge. In addition, as noted above, due to the potential complexity of the truss rehabilitation, the degree of certainty of construction costs would need to include an estimated contingency which may or may not be realized and possibly exceeded.

4. Community Identity / Cultural / Historic / Environmental Impacts: This alternative would preserve the historic bridge but not under its intended use. This alternative requires the most environmental impacts due to the addition of the two-lane bridge.

Alternative 8 - On-Line Replacement

1. Vertical & Horizontal Alignment: Due to the removal of the existing bridge, this alternative allows for the best horizontal and vertical alignments.

2. Construction complexity / risk: Alternative 8 has the least complexity to build and would be constructed using traditional industry standard bridge construction methods. The only additional component to this alternative would be the removal of the existing bridge.

3. Construction Cost and Long Term Maintenance: This is the lowest cost alternative and requires the lowest estimated long term maintenance costs. Due to the limited complexity of construction, construction costs can be estimated to a higher degree of certainty.
4. Community Identity / Cultural / Historic / Environmental Impacts: Alternative 8 would remove the historic bridge but has the least amount of environmental and ROW impacts. Some mitigation would be required as a result of the truss removal which would likely include Historic American Engineering Record (HAER) Documentation as well as some interpretive signing at the site.

Alternative H - Rehabilitation of Existing Bridge with addition of a Second One-Way Bridge on the Upstream Side:

1. Vertical & Horizontal Alignment: This is the least ideal alternative in regards to the vertical and horizontal alignment. The construction of the one-lane bridge built upstream while rehabilitating the existing bridge creates the need to split traffic along the bridge approaches and would require guardrail in the bridge approach “medians”. The alignment also includes the addition of reverse horizontal curves to match in at the southern limits of the project. To meet the 35 mph design speed, street lighting would be required at the vertical curve just north of the bridge in order to provide the necessary Stopping Sight Distance at night.

2. Construction complexity / risk: While the construction of the new single lane bridge would be done using traditional industry standard bridge construction methods, the rehabilitation of the existing truss to carry legal highway loads makes this alternative the most complex to build and carries a higher degree of risk which includes:

 a. The rehabilitation efforts include strengthening or replacement of a significant amount of the existing members or elements as well as replacement of the existing horizontal top lateral bracing to increase the vertical clearance of the bridge to meet current standards.

 b. There is additional complexity and risk to cost escalation which is inherent in the nature of historic bridge rehabilitation. This risk includes the discovery of additional corrosion or members requiring to be replaced or strengthened during construction which was not evident during the detailed inspection. This risk can be mitigated to a certain degree by providing appropriate contingencies in the design documents and construction cost estimates. Cost contingencies have been accounted for to a certain degree in the estimated cost shown in the Matrix for the Truss Rehabilitation.

 c. There may be a limited base of contractors having the experience and expertise in historic steel truss rehabilitation. Therefore the number of qualified contractors bidding on the project may be limited and result in higher bid prices.

 d. Additionally, as stated above, this type of truss bridge is considered a non-redundant structure which could lead to more significant and possibly catastrophic modes of failure if the bridge is not properly maintained and inspected on a regular basis.
3. Construction Cost and Long Term Maintenance: This is the highest initial cost alternative and is almost 25% higher than the On Line Replacement Alternative. In addition, in order to maintain the truss in a functional capacity to carry legal highway loads, this Alternative has the highest long term maintenance costs. The maintenance costs for the truss over a 25 year period are estimated at over $1.9 million.

4. Community Identity / Cultural / Historic / Environmental Impacts: This alternative would preserve the historic bridge and its intended use. This alternative also has somewhat higher environmental impacts than the On Line Replacement Alternative due to the addition of the one-lane bridge.

The attached matrix provides an additional summary of the narrative above as well as estimated costs for each Alternative. Please review this summary at your convenience.

If you have any questions, please contact me at your earliest convenience at either 603-357-2445 or email me at rfaulkner@chacompanies.com.

Sincerely,

Robert J. Faulkner
Project Manager, Vice President
Sewells (or Sewalls) Falls Bridge
Concord, New Hampshire

Effects of Proposed Rehabilitation Alternatives on Historic Characteristics of Bridge

Portion of Original Bridge Drawing by Storrs & Storrs, Bridge Engineers, Concord, NH, 1915.

Report Prepared for
CHA Consulting, Inc.
11 King Court
Keene, New Hampshire 03431

by
Historic Documentation Company, Inc.
490 Water Street
Portsmouth, Rhode Island 02871

November 2012
1.0 INTRODUCTION

The purpose of this report is to review two recent reports, Sewalls Falls Bridge 2012 In-Depth Inspection and Sewalls Falls Bridge 2012 Load Rating, and provide an assessment of the findings and recommendations of those reports as they pertain to the potential treatment and historic integrity of the historic Sewalls Fall Bridge (Bridge). The general finding of both engineering reports is that the Bridge is in worse physical and structural condition than previously estimated, raising two issues: certain aspects of the Preferred Alternative Plan for the Sewalls Falls Bridge Replacement Project, adopted and approved by the Concord City Council in 2010, may no longer be feasible, and repairs to the trusses may be so extensive or intrusive that the historic integrity of the bridge is lost. The Preferred Alternative Plan calls for the rehabilitation of the existing truss bridge as a one-lane eastbound bridge with a new sidewalk added and extended off the downstream side. A new one-lane bridge for westbound traffic will be constructed upstream and alongside the existing truss.

Because the Sewalls Falls Bridge is a historic structure that has been determined eligible for listing in the National Register of Historic Places, the truss must be rehabilitated in accordance with the Secretary of the Interior's Standards for the Treatment of Historic Properties (SOI Standards) if federal funding is to be used for the project. The SOI Standards for Rehabilitation projects, while intentionally general in nature to enable broad interpretation to fit the particular circumstances of each historic property, were conceived with buildings in mind, not bridges. The result has been wide variations in historic bridge rehabilitation practice among different states and a lack of clear consensus on the limits to which specific bridge features can be repaired and replaced without destroying the historic integrity of the bridge, and hence, its eligibility for the National Register. In 2001, the Virginia Transportation Research Council studied the problem and published The Secretary’s Standards Interpreted for Bridge Repair, Rehabilitation, and Replacement Situations (see Appendix A). The VTRC standards serve as perhaps the best available guidelines for engineers to follow, however, they have not been officially adopted or codified by the regulating agencies.

The actual determination of the effects of a rehabilitation design on the integrity and eligibility of the Bridge will be arrived at thru consultation meetings of the NHDOT Cultural Resource Committee between representatives of NHDOT, FHWA, NHSRPO, the City and its engineering consultant, CHA. Typically, the preparation of relatively specific bridge rehabilitation plans or intentions must be provided in order for the Committee to best appraise the effects of each type of repair. Before the City expends further monies to prepare detailed rehabilitation plans, it seeks to gauge the feasibility of making the necessary repairs without destroying the integrity of the Bridge, and thus loosing the source of federal funding.

1 Reports prepared by Clough Harbour & Associates (CHA), Keene, NH for the City of Concord Engineering Services Division, March 2012, and June 2012, respectively.
2 New Hampshire Division of Historical Resources Determination of Eligibility (DOE), Sewells Falls Bridge over Merrimack River, Inventory Number CON0278, July 6, 2008. On file at NHDHR, Concord. The DOE determined the bridge to be eligible for the National Register under Criterion A - History, and Criterion C - Engineering.
2.0 CHARACTER DEFINING FEATURES

Character defining features are those physical components and elements of the resource, which are special or unique to the particular resource in design, materials or construction. The character defining features must be present and retain a reasonable degree or level of physical integrity for the resource to be eligible for listing in the National and/or State Register of Historic Places. The character defining features of High Pratt Truss Bridges have been identified in a previous study^4 from which the following table is taken:

Elements of the High Pratt Truss

<table>
<thead>
<tr>
<th>Component/Feature</th>
<th>Character Defining Feature (CDF)? Yes/No. Why</th>
</tr>
</thead>
<tbody>
<tr>
<td>Panel point connections</td>
<td>Yes. The type of panel connection, pin or riveted, have evolved in design and reflect the technological development and evolution of the truss type.</td>
</tr>
<tr>
<td>Configuration of truss design</td>
<td>Yes. The layout of the truss members define the truss type and subtypes.</td>
</tr>
<tr>
<td>Upper chord</td>
<td>Yes. Upper (top) Chord design has evolved and reflects engineering development of the truss type. Earlier truss upper chords were built-up members with channels, cover plates, tie-plates and/or lattice bars; later trusses may have single rolled member top chord.</td>
</tr>
<tr>
<td>Lower chord</td>
<td>Yes. Lower (bottom) Chord design has evolved and reflects engineering development of the truss type. Earlier truss lower chords were eyebars; later trusses generally have built-up members with channels or angles and tie plates.</td>
</tr>
<tr>
<td>Vertical members</td>
<td>Yes. Design of verticals has evolved and reflects engineering development of the truss type. Earlier trusses have built-up members; later trusses use single rolled wide-flange members.</td>
</tr>
<tr>
<td>Diagonal members</td>
<td>Yes. Design of diagonals has evolved the same as the vertical members and reflects engineering development of the truss type.</td>
</tr>
<tr>
<td>Floor beams and stringers</td>
<td>Yes and No. Floor beams and stringers from earlier pin-connected bridges typically have important design, material and connection details related to the truss design. Later riveted trusses are generally not defined in any important way by their floor beams and stringers. Riveted floorbeam-to-post connections are a defining feature and considered above under panel point connections.</td>
</tr>
<tr>
<td>Lateral top bracing</td>
<td>Yes. Top bracing methods have evolved and reflects engineering development of the truss type.</td>
</tr>
<tr>
<td>Portal</td>
<td>Yes. Portal design has evolved & reflects engineering development of the truss type.</td>
</tr>
<tr>
<td>Bearings</td>
<td>Yes. Bearing types have evolved and contribute to then understanding of the bridge type.</td>
</tr>
<tr>
<td>Sway bracing</td>
<td>Yes. Sway bracing has evolved in different forms depending on the designer and fabricator.</td>
</tr>
<tr>
<td>Lower lateral bracing</td>
<td>Yes and No. Lower lateral bracing on the early pin-connected bridges is often wrought iron with varying section shapes and end attachment fittings and are a CDF. Nearly all riveted bridges utilize steel angle lateral braces that do not possess design features other than section size and are not a CDF.</td>
</tr>
</tbody>
</table>

Elements of the High Pratt Truss

<table>
<thead>
<tr>
<th>Component/Feature</th>
<th>Character Defining Feature (CDF)? Yes/No. Why</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deck</td>
<td>Yes and No. Deck systems such as concrete slab are typical of many bridge types and are generally unrelated to truss design and not considered a CDF. Lightweight floors such as timber, open steel grid, solid bridge plank with wearing-course overlay can typically be related to design variations in the truss for economy such as lighter structural members and may be considered a CDF. Lightweight floors such as timber, open steel grid, solid bridge plank with wearing-course overlay can typically be related to design variations in the truss for economy such as lighter structural members and may be considered a CDF.</td>
</tr>
<tr>
<td>Sidewalk supports</td>
<td>Yes and No. Early bridges may have unique built-up, shaped, fabricator-specific or decorative sidewalk supports that can be considered a CDF. Later bridges typically all have simple angle or T-section braces of utilitarian design and are not a CDF. Later bridges typically all have simple angle or T-section braces of utilitarian design and are not a CDF.</td>
</tr>
<tr>
<td>Railings</td>
<td>Yes and No. Early bridges may have unique built-up, shaped, fabricator-specific or decorative railings that can be considered a CDF. Later bridges typically all have simple horizontal runs of pipe, angle or channel that are not a CDF. Later bridges typically all have simple horizontal runs of pipe, angle or channel that are not a CDF.</td>
</tr>
<tr>
<td>Substructure</td>
<td>Yes and No. Generally the substructure is not directly related in any important way to the particular features of the Pratt Truss type. However early bridges may have a stone masonry or an early concrete substructure (before 1910) that possesses engineering significance in its own right; in which case may be considered as contributing to the overall significance of the resource. Unusual substructure elements such as riveted pipe piers, early pre-cast concrete piling, open or decorative concrete piers or abutments can also be significant. Later bridges with simple standard-design concrete abutments and piers should be considered as non-CDFs. Later bridges with simple standard-design concrete abutments and piers should be considered as non-CDFs.</td>
</tr>
<tr>
<td>Rivets and Bolts</td>
<td>Yes and No. Rivets as a whole define the engineering of individual riveted members of pin-connected trusses, and the members as well as the joint connections of all riveted trusses. The use of bolted connections for field splices was also typical. The significance of riveted vs. bolted connections in a particular truss design should be evaluated in each case for any relative importance to the overall truss design.</td>
</tr>
<tr>
<td>Composition / Dimension / Strength of structural members</td>
<td>Yes. Early bridges built before 1910 may use wrought iron tension members with specialized end connections and adjusting nuts. Specialized high-strength steel alloy may be used for long spans and reflect special engineering design practice. New structural member shapes such as wide-flange beams used for columns and braces reflect the design evolution of the type.</td>
</tr>
</tbody>
</table>

3.0 REHABILITATION FEASIBILITY

3.1 CHA Load Rating Report Findings

The Load Rating Report states: "The results of the analysis indicate the bridge is understrength for current legal highway loads with all diagonals and most gussets having insufficient capacity. CHA believes the bridge can be rehabilitated and strengthened to support legal highway loads (HL93). The gusset plates control the capacity at about 50% of the legal load. CHA believes these members can be strengthened to achieve the full legal highway capacity by replacing rivets with high strength bolts and lengthening the connection. The previous engineering report included the addition of a sidewalk cantilevered outside of the truss. This can be done but will require additional strengthening of the top and bottom chords. Rehabilitating the truss to support..."
a sidewalk requires the strengthening of every member of the truss. CHA believes this exceeds the practical limits of rehabilitation."

CHA estimates the work to rehabilitate the trusses to full legal capacity without a sidewalk will consist of the following repairs:

<table>
<thead>
<tr>
<th>Description</th>
<th>Number Repaired</th>
<th>Total Number In Bridge</th>
<th>Percent Replaced</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Replace diagonals bent from vehicular impact</td>
<td>7</td>
<td>40</td>
<td>17.5%</td>
</tr>
<tr>
<td>2. Strengthen tension diagonals</td>
<td>25</td>
<td>40</td>
<td>62.3%</td>
</tr>
<tr>
<td>3. Strengthen lower chord members</td>
<td>17</td>
<td>36</td>
<td>47.2%</td>
</tr>
<tr>
<td>4. Strengthen verticals</td>
<td>7</td>
<td>32</td>
<td>21.9%</td>
</tr>
<tr>
<td>5. Strengthen gussets</td>
<td>40</td>
<td>72</td>
<td>55.6%</td>
</tr>
<tr>
<td>6. Replace Floorbeams</td>
<td>20</td>
<td>20</td>
<td>100%</td>
</tr>
<tr>
<td>7. Replace Stringers</td>
<td>144</td>
<td>144</td>
<td>100%</td>
</tr>
<tr>
<td>8. Replace bottom lateral Bracing</td>
<td>36</td>
<td>36</td>
<td>100%</td>
</tr>
</tbody>
</table>

The Load Rating Report notes that the information above was based on the following:
"The inspection was limited to the two truss spans superstructure elements only. The substructure and existing bridge flooring members are contemplated for complete replacement in the various bridge rehab/replacement schemes under consideration. The main members and gusset plates were analyzed. The floor beams and stringers were assumed to be replaced in kind and were not analyzed."

Section 4.0 below examines the effect of eliminating the added sidewalk from the plan, the complete replacement of the floor system, and the selective repair and/or replacement of each truss member type listed in the table above.

2.2 Integrity Considerations for Rehabilitation

High Pratt truss bridges like Sewells Falls that are eligible for the National Register under Criterion C for engineering significance, "should always possess several, and usually most, of the [seven] aspects of integrity: location, design, setting, materials, workmanship, feeling and association. Bridges should be intact, with an identifiable truss system, the majority of which should be original members or members replaced in-kind. The truss system should be capable of functioning, with or without structural reinforcement, but need not be in use for carrying traffic. Additions such as sidewalks, guide rails, replaced flooring and decking, and new abutments are acceptable as long as the truss system is in place.

According to the American Society of Civil Engineers (ASCE), engineers have a duty to seek cost effective methods to rehabilitate historic bridges so they remain on line. "Vehicular use is the best

5 From: New Hampshire Historic Bridge Management Plan for High Pratt Truss Bridges.
preservation because it keeps the bridge in highway maintenance, inspection and funding programs" (see Appendix C for the complete ASCE policy statement on historic bridges).

4.0 PROPOSED REHABILITATION TREATMENTS & EFFECTS

4.1 Elimination of Proposed Sidewalk

Description: According to CHA, "rehabilitating the truss to support a sidewalk requires the strengthening of every member of the truss... [and] that would exceed the practical limits of rehabilitation." 7

Proposed Treatment: Do not add the cantilevered sidewalk to truss bridge.

Effect of Treatment: Since the sidewalk is not an original feature of the bridge, its elimination from the rehabilitation plan removes an alteration that would have diminished the integrity of the original design.

4.2 Replacement of Floor System.

Description: According to CHA, "The Stringers are rolled beams; their date of origin was not determined, but they have the same staggered holes in the top flanges (for fastening timber nailers), as shown in the 1915 shop drawings. Floorbeams are built-up riveted sections with separate web plates and flange angles. Both the stringers and the floorbeams have been extensively modified; they have welded flange cover plates and web repair plates, possibly from multiple generations of rehabs and retrofit construction."

Proposed Treatment: Floor beams and stringers are assumed to be 100% replaced in kind.

Effect of Treatment: As noted in Section 2.1 above, the floor systems of riveted Pratt truss bridges such as Sewells Falls, including the floor beams, stringers and lateral bracing, do not typically contribute significantly to the technology of the truss design. Riveted floorbeam-to-post connections can be a defining feature and are considered under panel point connections. The term "replacement in-kind" can be open to interpretation. Since the new replacement floor beams and stringers must "fit" the existing truss connections, it is assumed for the purposes of this report that they will be of very similar overall dimensions to the existing members, but varying in section as required to meet load requirements. The new floor beams will likely be rolled or welded instead of built-up riveted.

Evidence in the form of the old bolt holes and the repair work suggests that the existing floor beams and stringers are probably original. Their complete removal would be considered an adverse effect under S106 Standards but their advanced deterioration and numerous ad-hoc repairs has rendered them unsuitable for further repairs. If repairs to existing members can be

7 “Practical limits” is not defined in the Load Rating report but presumably means that the cost of strengthening every member of the truss would grossly exceed the cost of a new bridge and therefore fail to meet the eligibility requirement of "reasonable costs" under the Federal Highways Historic Bridge Program (see Appendix B).
shown to be not feasible, then the Rehabilitation Standards allows full replacement of members in-kind as the "least degree of intervention."

4.3 Top Chords

Description: The top chords are built-up member consisting of two 12" channels with their legs turned out, joined with 18"x3/8" cover plates on top and double lacing bars on bottom. The channels are in four weights: 20.5, 25, 30 and 35 p.l.f.

According to the CHA Inspection Report: "top chords of the truss exhibit minor deterioration in their top plates due to crevice corrosion ("pack rust")...typically present between the horizontal bracing gusset plates and the top plates of the upper chords at each panel point...a conservative estimate of 33% section loss in the top plates of the upper chords is recommended for load rating purposes. Because this loss typically occurs over very short lengths along the member (<1"), it applies only to local bearing/compression stress, and not to slenderness or buckling modes of analysis. No losses were evident in the channel components of the chords, so the resulting weighted maximum effect of the top plate losses on the gross section is 12% for the section with the lightest channels."

Top chords are essentially in good serviceable condition with minor areas of corrosion. Providing that the cantilevered sidewalk is not added to the truss, the upper chords meet intended design loads (as a single lane bridge) as originally designed without repair or strengthening.

Proposed Treatment: No treatment other than blasting and painting and perhaps small localized weld fills in areas of deep corrosion pitting.

Effect of Treatment: The proposed treatment is regular maintenance and complies with the Rehabilitation Standards as and the least degree of intervention. Maintenance that can be considered typical for a particular resource or feature does not constitute an adverse effect by S106 standards.

4.4 Bottom Chords

Description: Built-up member consisting of four angles joined with tie plates to form an I-section member, installed with the web axis oriented horizontal. Angles are 5x3" or 5x3-1/2", in thicknesses of 5/16, 7/16, or 1/2". Web tie plates are 11" wide by 5/16 or 3/8" thick. Bottom chords are joined with gusset plates at the panel points to vertical and diagonal members.

According to CHA Inspection and LR reports, the lower chords as originally designed are of adequate capacity for the intended loading. Where vertical and diagonal truss members intersect gusset plates at the lower-chord panel points, there is minor to moderate crevice corrosion and localized section loss, typically greater at the inside gusset plates. A total of 17 of the 36 lower chord members were determined to exhibit enough potential section loss (up to 27%) to require repair.
Proposed Treatment: Strengthen 17 of the 36 lower chord members. Since all loss of section in the lower chords is localized at the gusset plates, repair can be made by increasing the size of the gusset plates to obtain several new bolt connections points beyond the areas of section loss. This could be done with new larger plates, or by adding cover and filler plates over the existing plates. Alternatively, strengthening plates the size of the chord angle legs could be welded or bolted directly to the chord members. The advantage of the gusset plate repair is that at many panel point locations the plates can also be designed with longer connections to the deficient vertical and/or diagonal members at that node, thereby accomplishing multiple repairs with one design and construction action.

Effect of Treatment: Either new larger plates or added cover plates will alter the appearance of the panel point connection – a character defining feature of riveted truss bridges – to some degree. An increase in connection length using cover plates sized to the width of the members to be strengthened would be the least noticeable, retain the original gussets, and would meet the SOI Standards. As long as the altered gusset plates do not significantly alter the overall appearance of the truss or disguise the intended purpose or function of its character defining features, the alteration would not constitute an adverse effect under S106 Standards. Gusset plates are further discussed in section 4.7 below.

4.5 Verticals

Description: Built-up member consisting of four angles joined with single lacing bars to form an I-section member. Angles are 5x3” or 3x3”, in thicknesses of 5/16 or 5/8”.

According to CHA Inspection report, where vertical and diagonal truss members intersect gusset plates at the lower-chord panel points, there is minor to moderate crevice corrosion and localized section loss, typically greater at the inside gusset plates. The greatest section losses found among all truss verticals was 15% on Span 1 Right Truss member U3L3.

Proposed Treatment: Strengthen 7 of the 32 verticals. Again, the most practical repair methods in terms of engineering, constructability and cost will be determined during the rehabilitation design. The needed repairs for the verticals can be accomplished in the same manner as for the lower chords by altering the connection length of the gusset plates. The alternative is to repair members by welding or bolting-on additional steel (sistering), and this is a suitable option as well. In the design phase it may be determined that a combination of sistering and gusset plate modification may be most cost-effective at certain panel points.

Effect of Treatment: The effects of repairs to the diagonals will be essentially the same as those discussed above for the lower chords. Special effort should be made by the engineer to design the least visually intrusive repairs as possible in order to meet the Rehabilitation Standards of least intervention.
4.6 Diagonals

Description: Built-up member consisting of either two angles joined with tie plates or four angles joined with lacing bars. Angles are 3x3, 4x3, or 5x3", in thicknesses of 5/16, 3/8 or 1/2". According to the CHA Inspection Report, deterioration of the diagonals is found at the lower-chord panel points where they are riveted to the gusset plates. As with the verticals, there is "minor to moderate crevice corrosion and localized loss of cross-sectional area...the greatest section losses found among all truss diagonals was 9% on Span 2 Left Truss member U1L2."

There are also seven diagonals that have been damaged in some way by impacts of vehicles or snow plow blades.

Proposed Treatment:
Replace the 7 diagonals damaged from vehicular impact and strengthen 25 tension diagonals to meet loading requirements. The diagonals are the controlling member in achieving the required design load, with seven out of the ten in each truss falling below the required strength as originally designed, and 25 showing some loss of section. Several options are available for repair and/or replacement of both the impact-damaged and the under-rated diagonal members that can be designed to meet SOI Standards:

- Sister partial or full-length strengthening plates onto existing angle members by welding or bolting.
- Fabricate entire new built-up welded member of similar and compatible design, with greater section if needed. Tie plates could be substituted for lacing bars to reduce cost provided some original lacing bar diagonals are retained on the bridge.
- Increase gusset plate connection length as previously described.

Effect of Treatment: The use of bolts or welding is an obvious visual difference from riveting, but there is no reason to assume that such repairs would fail to meet the SOI Standards. Large wood beams in historic buildings are routinely reinforced with columns or through-bolted steel sister plates in SOI–approved historic tax credit rehabilitation projects as the repair method constituting the least degree of intervention. Similar repairs can be allowed on bridges. The use of tie plates instead of lacing bars on the tension diagonals can be justified by their original use on the counter diagonals and vertical members. It can be assumed that cost effective repairs to the diagonals can be designed the meet the SOI Standards with minor adverse effect.

4.7 Gusset Plates (Panel Point Connections)

Description: Structural members of riveted trusses are joined together where they intersect at the panel points with steel plates of varying size, shape and thickness called gusset plates. The plates extend out from the center of the intersection point a calculated distance to provide the connection length and number of rivets structurally required. The dimensions and shape of the plates is dictated in part by the connection length, and for purposes of material savings the plates are multi-angled polygons that roughly conform to the loading stresses they bear. As discussed in the Inspection Report, corrosion typically occurs at gusset plates where water and other corrosion facilitators penetrate between the layers of steel in spite of their tight riveted bond.
Proposed Treatment:
The gussets are also controlling members in the load rating analysis and over half, 40 out of 72, will require strengthening or replacement to meet design loads. As previously noted, the strengthening of the gusset plates and lengthening of the connections the plates make with the members they are joining, also remedies most of the structural deficiencies in those members as well. Because the section losses are relatively small in all but a few of the gusset plates and the members they join, nearly all truss members are good candidates for repair and strengthening.

Effect of Treatment:
The impact of new oversized gusset plates, should that be the preferred engineering design, would need to be evaluated with a scale elevation drawing of the truss with the new plates superimposed over the old plates. New plates cut to the same polygonal shape of the old plates, with connection length extensions cut to the width of the member they were strengthening, might be considered less visually incongruent with the original design. The application of cover plates, bolted through existing gusset plate rivet holes, and extended up the diagonal members and attached with bolts thru new holes, would not be a significance adverse effect if shown to offer the least degree of intervention.

4.8 BRACING SYSTEMS

Description: Upper and lower bracing systems form rigid connection between the two trusses above the roadway and below the floor. Lower lateral bracing consists of 3x3” or 3x3-1/2” angles, two per panel crossing in an X to join diagonally opposite panel connections at gusset plates riveted to the floorbeams. Upper laterals are crossed 3x3” angles, diagonally joining the upper panel points at gusset plates riveted to the top chord cover plates. Sway bracing consist of light triangular trusses built entirely of angles. According to the CHA Inspection Report: “the upper lateral (horizontal-plane) and sway (vertical-plane) bracing exhibit only minor pack rust and no significant distortions…at the intermediate sway bracing, several low chords exhibit minor to moderate bends, with little effect on other components…”

Proposed Treatment: Lower laterals will be replaced in-kind along with the other components of the floor system. The portal bracing and upper sway bracing will require alteration in order to meet vertical clearance requirements. This work will require disassembly of portions of the portal and sway bracing in order to shorten the diagonal members of the bracing and raise the bottom bracing members by roughly 18 inches. Because the overall depth of the bracing assembly will be decreased, heavier members and connections will likely be required.

Effect of Treatment: Laterals are all angle members without any significant historic design or material characteristics for their time. Laterals can be replaced entirely in-kind without any effect on the character defining features of the bridge. Alteration of the portal and sway bracing assemblies to meet clearance requirements will require their reconstruction with stronger members. If reconstruction of the portal bracing follows the same original member layout and resembles the original design as closely as possible, adverse effects can be minimized or eliminated.
5.0 CONCLUSIONS

The CHA Load Rating Report finds rehabilitation of the Sewells Falls Bridge practical, and based on the information presented in the Inspection and Load Rating Reports, there is nothing to suggest that the rehabilitation can't be done in accordance with the Secretary of the Interior's Standards for Rehabilitation. Compliance with those standards, as elaborated in Virginia's Secretary's Standards Interpreted for Bridge Repair, Rehabilitation, and Replacement Situations, will insure that the bridge retains the necessary integrity of its historic design and materials required for listing in the National Register of Historic Places.

Three types of repairs require strengthening roughly half of the total number of members in the type group: diagonals, 62.3%, lower chords, 47.2%, and gusset plates, 55.6%. These percentages suggest that roughly 50 percent of the members require replacement, which is not necessarily a correct assumption. The members in question are in most cases in good condition with relatively small section losses making them good candidates for cost-effective repair and strengthening to meet the intended loading.

The high percentage of certain members needing repair or replacement raises a question regarding the amount of historic integrity that would be left after the rehabilitation of the bridge. There is no rule or standard of practice that establishes 50%, or any other percentage of materials or members repaired or replaced, as a historic integrity cutoff point. Integrity is a measure of multiple factors with varying weights of importance depending on the resource and the nature of the repairs.

Conversion of the bridge to carry a single lane of traffic has made the job of rehabilitating the bridge to carry modern loads feasible from the standpoint of maintaining the historic integrity of the bridge.

The use of high strength bolts in place of rivets, modified gusset plates, "in kind" replacement members, sistering plates, and welding, can all be used to rehabilitate historic bridges. Although some member repairs or replacement alternatives may by necessity stray from the original design, the effects will be considered acceptable under the Rehabilitation Standards providing the designing engineer can show the chosen alternative will have the least degree of intervention.
APPENDIX A

THE SECRETARY’S STANDARDS INTERPRETED
FOR BRIDGE REPAIR, REHABILITATION, AND REPLACEMENT SITUATIONS

The Secretary of the Interior’s Standards for Treatment of Historic Properties (Weeks and Grimmer, 1995) were first codified in 1979 in response to a federal mandate requiring the establishment of policies for all programs under the authority of the Department of the Interior. The Secretary’s Standards are used in review of all federal projects involving historic properties listed on or eligible for listing on the National Register of Historic Places. Compliance with the Secretary’s Standards provides for the preservation of the historic and architectural integrity of properties being rehabilitated. The Secretary’s Standards were most recently revised in 1992. The Department of the Interior regulations (36 C.F.R. 67.7(b)) states that the Secretary’s Standards are to be applied in a reasonable manner, taking into consideration economic and technical feasibility.

Since their identification, the Secretary’s Standards have been interpreted and applied in response overwhelmingly to one type of historic resource: buildings. Although the philosophy of the Secretary’s Standards can be applied to bridges, the fundamental differences between buildings and structures must be considered. Newlon (1985) argued that the purpose of buildings is the organization and control of space, providing for a wide and flexible range of functions. Engineering structures such as bridges are designed primarily to control loads and forces to accomplish more limited functions such as the transport of people and goods on roads and bridges, retention of water by dams, or support of cables by towers. The more restrictive function of engineering structures is reflected in their design and construction, and this imposes limitations on continued or alternative uses that do not apply in the same degree to buildings.

The following wording of the Secretary’s Standards addresses the unique requirements of historic bridges. This text closely follows the similar section that appeared in A Management Plan for Historic Bridges in Virginia (Miller et al., 2001).

1. Every reasonable effort shall be made to continue a historic bridge in useful transportation service. Primary consideration shall be given to rehabilitation of the bridge on site. Only when this option has been considered shall other alternatives be explored.

Bridges are designed to carry roadways over obstructing conditions: ravines, waterways, and other roadways. Bridges are best suited for this type of use. The first priority should always be retention of a bridge in its existing location and in its existing function. In many instances, contemporary vehicular traffic demands may exceed the capacity of an old bridge, and programmatic modifications, such as reduced transportation service, should be considered. Limiting the loads and types of vehicles that may use a bridge will require minimal change to the defining characteristics of the bridge. Under some circumstances, bridges may be suitable for adaptive re-use. Zuk, Newlon, and McKeel (1980) described some approaches for adapting metal truss bridges for alternative uses, including housing, commerce, etc. Alternative uses may be considered for bridges left in their original locations and for bridges that are re-located. Some metal truss bridge types were designed so that relocation would be readily achievable, and many smaller trusses have served at several locations in Virginia. One example is a Fink Truss located in Lynchburg. This bridge, when taken out of service, was relocated to a park, where it is visible, accessible, and presented in context with a locomotive and other transportation resources.

2. The original character-defining qualities or elements of a bridge, its site, and its environment should be respected. The removal, concealment, or alteration of any historic material or distinctive engineering or architectural features shall be avoided.

The character-defining features of a historic bridge must be identified so that these physical features can be retained and preserved. The bridge surveys completed by the Virginia Transportation Research Council (see, for example, Miller and Clark, 1997) are the primary means of identifying important bridges and their character-defining features.

1 All bridges shall be recognized as products of their own time. Alterations that have no historical basis and that seek to create a false historical appearance shall not be undertaken.

2 Most properties change over time; those changes that have acquired historic significance in their own right
shall be retained and preserved.

3 Distinctive engineering and stylistic features, finishes, and construction techniques or examples of craftsmanship that characterize a historic property shall be preserved.

Characteristic features, finishes, and construction techniques must be identified so that they can be preserved. In most bridges, the most important character-defining features will be the primary structural components: trusses, girders, T-beams, slabs, concrete arches, etc. Operating mechanisms for moveable spans should also be considered primary character-defining features. Secondary characteristic features may include Phoenix columns, pinned truss connections, lattice beams, cork rails, and curbs. Abutments, piers, approaches, and other features of the crossing may be identified as primary or secondary character-defining features. In many cases, decking and roadbeds will not be considered significant character-defining features.

6. Deteriorated structural members and architectural features shall be retained and repaired, rather than replaced. Where the severity of deterioration requires replacement of a distinctive element, the new element should match the old in design, texture, and other visual qualities and, where possible, materials. Replacement of missing features shall be substantiated by documentary, physical, or pictorial evidence.

The Secretary’s Standards recommend retention and repair of existing historic features, rather than replacement. They also acknowledge the limited life-span of most building materials. When bridge components are deteriorated beyond a reasonable prospect of retention and repair, replacement can be considered. Although replacement in kind is generally recommended, alternative materials can be considered.

Modern metals with superior resistance to deterioration (stainless steel, for example) may be used to replace missing or severely deteriorated historic members provided they are galvanically compatible with the surviving original members.

7. Chemical or physical treatments that cause damage to historic materials shall not be used. The surface cleaning of structures, if appropriate, shall be undertaken using the gentlest means possible.

Materials typically used in bridge construction are generally selected for their ability to resist harsh conditions. Aggressive chemical or physical treatments may be appropriate for cleaning of some common bridge materials and components. In Metals in America’s Historic Buildings, Gayle, Look, and Waite (1992) describe appropriate measures for proper surface preparation of iron and iron alloys, including flame cleaning, pickling, sandblasting, and other abrasive processes. Dismantling of truss bridges and galvanizing or metallizing the component chords is suggested as a sound means of preserving the historic features and configuration without damage.

8. Significant archaeological and cultural resources affected by a project shall be protected and preserved. If such resources must be disturbed, mitigation measures shall be undertaken.

Associated resources may include fords, abutments, piers, and other features associated with earlier crossings. They may also include structures that are adjacent to, but not culturally related to the bridge: canals, sluices, mills, raceways, shipwrecks, fish-traps, and power plants.

9. New additions, exterior alterations, structural reinforcements, or related new construction shall not destroy historic materials that characterize the property. The new work shall be differentiated from the old and shall be compatible with the massing, size, scale, and architectural features to protect the historic integrity of the property and its environment.

Structural reinforcement may be necessary to allow a historic bridge to continue in service. In extreme cases, new structural components that supersede the historic components may be necessary. Priority must be given, in all such cases, to retaining significant historic structural components, even if their load-carrying function is reduced or eliminated. New structural elements should be designed so that the historic components remain visible and so that the historic structural configuration remains evident. A valid approach is the method of superimposing structural steel arches in truss bridges, which relieves the critical historical connections and members of much of the stresses imposed by modern traffic (Kim and Kim, 1988).

10. New additions and adjacent or related new construction shall be undertaken in such a manner that if removed in the future, the essential form and integrity of the historic property and its environment would be unimpaired.
APPENDIX B

TITLE 23 – UNITED STATES CODE – HIGHWAYS
[As Amended Through P.L. 106-347, October 13, 2000]

CHAPTER 1, FEDERAL-AID HIGHWAYS
SECTION 144: Highway Bridge Replacement and Rehabilitation Program

(o) Historic Bridge Program.

(1) Coordination.— The Secretary shall, in cooperation with the States, implement the programs described in this section in a manner that encourages the inventory, retention, rehabilitation, adaptive reuse, and future study of historic bridges.

(2) State inventory.— The Secretary shall require each State to complete an inventory of all bridges on and off Federal-aid highways to determine their historic significance.

(3) Eligibility.— Reasonable costs associated with actions to preserve, or reduce the impact of a project under this chapter on, the historic integrity of historic bridges shall be eligible as reimbursable project costs under this title (including this section) if the load capacity and safety features of the bridge are adequate to serve the intended use for the life of the bridge; except that in the case of a bridge which is no longer used for motorized vehicular traffic, the costs eligible as reimbursable project costs pursuant to this subsection shall not exceed the estimated cost of demolition of such bridge.

(4) Preservation.— Any State which proposes to demolish a historic bridge for a replacement project with funds made available to carry out this section shall first make the bridge available for donation to a State, locality, or responsible private entity if such State, locality, or responsible entity enters into an agreement to—

(A) maintain the bridge and the features that give it its historic significance; and
(B) assume all future legal and financial responsibility for the bridge, which may include an agreement to hold the State transportation department harmless in any liability action.

Costs incurred by the State to preserve the historic bridge, including funds made available to the State, locality, or private entity to enable it to accept the bridge, shall be eligible as reimbursable project costs under this chapter up to an amount not to exceed the cost of demolition. Any bridge preserved pursuant to this paragraph shall thereafter not be eligible for any other funds authorized pursuant to this title.

(5) Historic bridge defined.— As used in this subsection, “historic bridge” means any bridge that is listed on, or eligible for listing on, the National Register of Historic Places.
APPENDIX C

Policy Statement of the
American Society of Civil Engineers
for the

REHABILITATION OF HISTORIC BRIDGES

Policy:

The American Society of Civil Engineers (ASCE) supports the maintenance, repair and rehabilitation of historic bridges preferably in continued vehicular use, and when that is not possible, some alternative transportation means such as a pedestrian or bike bridge.

Rationale:

Historic bridges are important links to our past, serve as safe and vital transportation routes in the present, and can represent significant resources for the future. Rehabilitation maintains these important engineering structures in service and can represent significant cost savings. Bridges are the single most visible icons of the civil engineer’s art. By demonstrating interest in the rehabilitation and reuse of historic bridges, the civil engineering profession acknowledges concern with these resources and an awareness of the historic built environment.

Justification:

Many historic bridges can still serve the nation’s transportation needs given appropriate repair, maintenance and flexibility in interpreting transportation standards as suggested by national transportation policy. Due to perceived functional obsolescence, lack of cyclical maintenance, and any funding priority, historic bridges are a heritage at risk. Over half the historic bridges of the United States have been destroyed during the last twenty years - a startling and alarming statistic. Certainly no one can argue that outstanding and representative examples of the nation’s historic bridges shouldn’t be preserved.

Vehicular use is the best preservation because it keeps the bridge in highway maintenance, inspection and funding programs. When not possible to continue in vehicular use on primary roads, consideration must be given to relocating historic bridges to roads receiving lighter volumes of traffic or alternative means of transportation such as hiking trails and bikeways. America is developing a comprehensive network of scenic highways and byways. Tandem to this is a network of hiking trails and bikeways. Maintaining and relocating historic bridges to these systems sustains the scale, character and feeling of these historic, recreational and scenic corridors.

There is growing public interest in historic bridges. Citizens groups throughout the country are working to save historic bridges. We, as civil engineers, need to help lead and support these efforts. Bridges are engineered resources thus requiring the skills of engineers. There is little chance that the historic bridges of the United States can be saved without the interest and skills of engineers, until they become part of everyday transportation policy, receive the support of transportation officials at all levels, and the continued interests of citizen groups.

<table>
<thead>
<tr>
<th>Sidewalk</th>
<th>Typical Section</th>
<th>Alternative 4</th>
<th>Alternative 8</th>
<th>Alternative H</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>5' Shlder - 12' Lane - 12' Lane - 5' Shlder</td>
<td>5 feet on both sides</td>
<td>15' Existing - 20' New</td>
<td>One 5' wide sidewalk</td>
</tr>
</tbody>
</table>

Engineering Issues
- **Design Speed**
 - 35 mph
 - 35 mph
 - 35 mph w/Lighting
- **Profile**
 - 36 mph
 - 36 mph
 - 20 mph
- **Maintenance of Traffic**
 - On existing bridge
 - Bridge closed during construction
 - On existing bridge
- **Phased bridge construction?**
 - No
 - No
 - No
- **Approx. construction duration**
 - 2 seasons
 - 2 seasons
 - 3-4 seasons
- **Sewer and gas lines**
 - Can remain on exist bridge
 - Relocated
 - Can remain on exist bridge

Right-of-Way Impacts
- **Fish & Game property**
 - Moderate (E)
 - Moderate (E)
 - Moderate (E)
- **State LCIP property**
 - Substantial (A)
 - Moderate (E)
 - Substantial (A)
- **Concord Monitor**
 - Substantial (A)
 - Moderate (E)
 - Substantial (A)
- **Residential property opposite Concord Monitor**
 - Minimal (E)
 - Moderate (E)
 - Minimal (E)

Resource/Environmental Impacts
- **Existing historic bridge**
 - Can remain in place
 - Removed
 - Can remain in place
- **Fish & Game boat ramp**
 - None
 - Minimal**
 - None
- **LCIP property**
 - Substantial
 - Moderate
 - Substantial
- **Floodplain/floodway**
 - Minimal
 - Minimal
 - Minimal
- **Potential eagle perch trees**
 - Moderate
 - Minimal
 - Moderate
- **Brook Floater mussels**
 - Minimal
 - Minimal
 - Minimal

Community Resource Impacts
- **Emergency Response Time During Construction**
 - Minimal
 - Substantial
 - Minimal
- **Bicycle/Pedestrian Safety Improvement**
 - Substantial
 - Substantial
 - Minimal
- **Aesthetic Impact**
 - Substantial
 - Substantial
 - Moderate
- **Recreational Impacts**
 - Minimal
 - Moderate
 - Minimal
- **Neighborhood Impacts**
 - Moderate
 - Moderate
 - Moderate
- **City Cost**
 - Standard****
 - Standard****
 - High Initial***

Cost
Steel Girder/Reinforced Concrete Deck
- **Bridge Construction**
 - $5,324,000.00
 - $5,324,000.00
- **Removal of Exist. Truss Bridge**
 - $-
 - $400,000.00
- **Removal of Exist. Approach Spans**
 - $430,000.00
 - $430,000.00
- **10' Wide Culvert in West Approach Fill**
 - $150,000.00
 - $150,000.00
- **Roadway Construction**
 - $3,187,000.00
 - $2,954,000.00
- **Right-of-Way**
 - $250,000.00
 - $150,000.00
- **Engineering**
 - $670,000.00
 - $575,000.00
- **Existing Bridge Rehabilitation for Pedestrian Use**
 - $600,000.00
 - $-
- **Utility Relocations***
 - $-
 - $-

Total
- **Steel Girder/Reinforced Concrete Deck**
 - $10,611,000.00
 - $9,833,000.00

Rehab Existing Truss and Add 2nd One-Lane Bridge
- **Bridge Construction**
 - $4,310,000.00
- **Rehabilitation of Exist. Truss Bridge**
 - $3,106,000.00
- **Painting of Existing Truss**
 - $886,100.00
- **Removal of Exist. Approach Spans**
 - $430,000.00
- **10' Wide Culvert in West Approach Fill**
 - $150,000.00
- **Roadway Construction**
 - $3,119,000.00
- **Right-of-Way**
 - $250,000.00
- **Engineering**
 - $670,000.00
- **Utility Relocations**
 - $-

Total
- **Rehab Existing Truss and Add 2nd One-Lane Bridge**
 - $12,923,100.00

Approximate Maintenance costs of truss over 25 years
- $81,000.00
- $-
- $1,903,000.00

Approximate maintenance of new bridge over 25 years
- $534,980.00
- $534,980.00
- $534,980.00

* does not include utility relocation costs
** Alternate funding may be required for rehabilitation of the existing bridge
*** Assumes bridge type to be Steel Girder/RC Deck
**** Impacts to the boat ramp can be mitigated by constructing a flanking span across the ramp, cantilevering the proposed sidewalk over the ramp, or relocating the ramp
Concord 12004
Sewalls Falls Road Bridge over the Merrimack River

Alternatives Summary Matrix - Nov. 28, 2012
Bottom chord and gusset plate section loss hidden by floor framing. NHDOT Bridge Henniker 123/106 - Ramsdell Road Truss Rehabilitation. Photo and information provided by Matthew J. Low, Hoyle Tanner & Associates, Inc.

New interior gusset plate installed. NHDOT Bridge Henniker 123/106 - Ramsdell Road Truss Rehabilitation. Photo and information provided by Matthew J. Low, Hoyle Tanner & Associates, Inc.
New bottom chord installation. NHDOT Bridge Henniker 123/106 - Ramsdell Road Truss Rehabilitation. Photo and information provided by Matthew J. Low, Hoyle Tanner & Associates, Inc.

New bottom chord installed. NHDOT Bridge Henniker 123/106 - Ramsdell Road Truss Rehabilitation. Photo and information provided by Matthew J. Low, Hoyle Tanner & Associates, Inc.
Lower chord replacement bolted to existing gusset plate (Source: Dave Powelson, NHDOT; A092-015)

Lower chord and gusset plates replaced (Source: Dave Powelson, NHDOT; B188-010)
Bethlehem 099/152: Bearing, chords, gusset plate repair (Source: HDC).

Bethlehem 099/152: Chord replacement, post & connection strengthening (Source: HDC).
Stratford Maidstone 098/064: Vertical strengthening (Source: HDC).